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Topological Aspects of Liquid Crystals
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Using ¢-mapping method and topological current theory, the properties and behaviors
of disclination points in three-dimensional liquid crystals are studied. By introducing
the strength density and the topological current of many disclination points, the total
disclination strength is topologically quantized by the Hopf indices and Brouwer de-
grees at the singularities of the general director field when the Jacobian determinant of
the general director field does not vanish. When the Jacobian determinant vanishes, the
origin, annihilation, and bifurcation of disclination points are detailed in the neighbor-
hoods of the limit point and bifurcation point, respectively. The branch solutions at the
limit point and the different directions of all branch curves at the first- and second-order
degenerated points are calculated. It is pointed out that a disclination point with a higher
strength is unstable and will evolve to the lower strength state through the bifurcation
process. An original disclination point can split into at most four disclination points at
one time.
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1. INTRODUCTION

Adisclination is one of a class of what are called topological defecenighi,

1983; Kurik and Lavrentovich, 1988a,b; Mermin, 1979). It is defined by using
the well-known Volterra process for the case of rotations (Friedel, 1964; Nabarro,
1967) in which the two lips of the cut surface are rotated with respect to each other.
Gennes (1970) proposed another constitutive definition in which only the directors
in liquid crystals of the cut surface are individually rotated around an axis passing
through their centres of gravity. The two definitions are equivalent geometrically,
except for a field of infinitesimal translation dislocations in the sense of Nye
(Kleman, 1972, 1973). The disclinations have the property that no continuous
distortion can make them disappear (i.e., return the systemto its undistorted aligned
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ground state). Their properties depend on the symmetry of the order parameter and
the topological properties of the space in which the transformation variable resides
(Lubensky, 1997). In liquid crystals, due to the equivalence of the general director
fieldsn and—n in physics, a disclination is labeled by the disclination strength of
integer or half-integer.

Disclinations take a great part of liquid crystal physics and play important
roles in the static structures and dynamic behaviors of liquid crystals (Holz, 1992).
Because of the importance, their exploration has along history and there were early
attempts to classify them. As a branch of topology, homotopy theory provides the
natural language for the description and classification of defects in a large class of
ordered systems (Mermin, 1979). This work originated by papers of Finkelstein
(1966), Rogula (1976), Toulouse andaftan (1976), Volovik and Mineev (1976,
1977a,b), Shankar (1977), andeithanet al. (1977), and was summarized by
Mermin (1979), Anderson (1984), and Bray (1994). In the classification, a funda-
mental algebraic structure was discovered in the form of homotopy groups. These
groups are discrete. Their elements, in essence, label the defects and constitute
a generalization of the index of a defect (like the vorticity in a superfluid) or of
the triple of indices (like the Burgers vector of a dislocation in three dimensions).
Physical processes involving defects were recognized to correspond to algebraic
operations: defect coalescence to the group product, defect transformation (for
instance in a phase transition) to a group homomorphism, the crossing of defect
lines to the commutator of group elements, the motion of a point defect about a line
defect to a group action. Thus, via the homotopy theory, a deep relation between
the symmetry group of the uniform medium and the defects of its distorted states
becomes manifest (Trebin, 1982).

In 1976, Blaha proposed a quantization rule for point singularities in super-
fluid *He and liquid crystals, which was expressed in terms of the local symmetry
axis of the order parameter. In this paper, we will discuss the topological quanti-
zation and bifurcation of disclination points in three-dimensional liquid crystals
in terms of the general director field directly. This work is based on the so-called
¢-mapping method and topological current theory (Deaal, 1997a; Yang and
Duan, 1998, 1999).

This paper is organized as follows. In Section 2, the topological current of
disclination points in three dimensions is introduced through the Volterra process.
Then, the topological quantization of disclination points is achieved in Section 3
when the Jacobian determinant of director field does not vanish. When the Jacobian
determinant vanishes, the origin and annihilation of disclination points are dis-
cussed at the limit point of director field in Section 4. The bifurcation processes
of disclination points at the first- and second-order degenerated points of director
field are studied in Sections 5 and 6, respectively. The conclusions of this paper
are in Section 7.
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2. TOPOLOGICAL CURRENT OF DISCLINATION POINTS

It is well known that a disclination can be produced by using the Volterra
process for the case of rotations in which the two lips of the cut surface are rotated
by angleQ2 with respect to each other and some undistorted materials are inserted
into or removed from the body of system. For the stable states, the rofatinunst
satisfy (de Gennes, 1974)

1 3
Q=2mtm, m==—-,+1,+-,... Q)
2 2
due to the equivalence of the general director figiflg and —n(x) in physics,
wherem is defined as the disclination strength of integer or half-integer. A more
general definition of the disclination strength is the winding number (Shankar,
1977) in two dimensions or wrapping number (Blaha, 1976) in three dimensions
of the general director field(x) around the disclination line or disclination point,
respectively. In three-dimensional case, suppose therd &elated disclination
points in system and tHéh disclination strength is
1 O -
m|=—y§eijkn'dn‘Adnk, i,j, k=123, 2)
4 J,
whereo; is a closed surface around thh disclination point and A” stands for
the wedge product. Using the Gauss formula, (2) is changed into
11 ; -
== icdn Adnl A dnk
4r 2 /\, cilk

1
T 87

m

/e“ﬂyeijkaanialgnjaynkdxdydz o, By=1273 (3
Vi

whereV, is the volume surrounded by. For the liquid crystals with a set of
disclination points, the total disclination strength is

m:Zm,:/,odXdde 4)
] \%
where
1 . .
o= S—G“ﬂye”kaan' dpnia,n*, a, B, y,i,j, k=1,2,3, (5)
7T

is called the strength density of the disclination points. In order to study the behavior
of disclinations, we will extend the above density to the topological current of
disclination points. In liquid crystals, it is well known that the general director
field n(x) responds to some external factors, such as the magnetic field strength,
electric field strength, pressure and temperature. If wa9etenote one of the
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above factors, the director field is expressed by
n = n(x° x). (6)
In this case, taking account of the expressiomw af (5), we introduce the topo-
logical current of disclination points as
1 S
jo = B—e“ﬂyse”kaﬂn'aynlagnk, o, B, v,8=0,1,2,3,i,j,k=1,23
T
(1)

It is obvious that
¥Wj*=0, j°=p, 8

i.e., the topological current is identically conserved and its 0-component is the
strength density of the disclination points. In the following, we will study the
inner structure and the topological quantization of the topological current using
the so-called-mapping method.

3. TOPOLOGICAL QUANTIZATION OF TOPOLOGICAL CURRENT

Since the general director fietdin liquid crystals is a unit vector field,

nn'=1, i=1,2,3, 9)
it can, in general, be further expressed as
100 = £ 18001 = Va9, (10

whereg' () is the order parameter of disclination points in three dimension. It is
easily to see that the zeros@f(x) are just the singularities af (x) at which the
director field is indefinite. Here, we point out that the order parangé{e) is not
arbitrary, its direction field must coincide with the director fiei@x) or, in other
words, (9) and (10) are the limits of the choice¢d{x). In different conditions,
the meaning o' (x) is different. In solid state physice! (x) is the tangent stress
field. For the case considered hegeé(x) can be taken as the molecular field
¢'(x) = V2n'(x) which is parallel to the director field(x) (de Genes, 1974).
Using (10) and

i Lo i i (L 9 (1 ¢
aot "= —aoz ! Iaa — ), — | — )| =—-———, 11
" lloll oEe <|I¢>|I> ¢! <|I¢|I> o3 (11)
j% in (7) can be rewritten as

1 . 0 0 1
@ = — BV 8.9 pl sk — [ —). 12
: gr€ KO HONG T (||¢||> (12)
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If we define the general Jacobian determinants as
ek ge (%) = P9, 8, ) 950" (13)
and make use of the Green function relation
8o (57 ) = ~m5* @) (14)

whereA,, = (3%/3¢' 3¢') is the Laplacian operator ip-space, we do obtain the
8-function like topological current of disclination points

j¢ = 8%(¢)J” (%) . (15)
From (4), (5), and (15) we see that the total disclination strength, the strength
density and the topological current of disclination points do not vanish only at the
zeros ofp(x), i.e., at the singularities of the general director fie(#). So, let us
concentrate on the zeros ¢fx).

Suppose that the order paramefbx) possesseN isolated zeros, according
to the implicit function theorem, when the Jacobian determinant

J (%) =J° (%) #0, (16)

the solutions ofp' (x) = 0(i = 1, 2, 3) can be expressed in terms of the external
factorx® as

x*=7x%, «=1,23, I=1,...,N, (17)

and the generalized velocity of thth zero ofg' (x) is given by
e 9x_ 3@/%)
S dx® T J(¢/x)

Then, as we proved in Duaet al. (1997b), thes-functions3(¢) can be expanded
by these zeros as

ey, VO=1 (18)

N
NOEDY La(xl —7'(x%)8(x* — Z(x9)s (x> — Z(x%),  (19)
— 13(#/X)z]
where the positive, is called the Hopf index aj' (x) atz and it means that, when
the pointx wraps the zerg, once, the functiog' (x) rotatess; times of 4r, which
is a topological number and relates to the wrapping number ©4). In liquid
crystals, due to the equivalence of the general director fieldd —n, 8 can be
integers and half-integers, Substituting (18) and (19) into (15), the inner structure
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of the topological current is formulated by
N

=) Ams(xt = 7 (x9)s(x* — 2(x9)s(* - Z2(x))v*  (20)
=1
which can also be looked upon as the topological quantization of the disclination
points, where;; is called the Brouwer degree ¢f(x) atz,

J(p /X

=0 4 (21)
13(@/X)I

according to the clockwise or anticlockwise rotationgd{x) whenx wrapsz

clockwise. Then, the topological quantizations of the strength density and the total

strength of disclination points are

N
p =Y Ams(x' -z (x%)s(x* — Z(x))s(x* - £(x%)) (22)
1=1
and
N
m=>"Amn. (23)
I=1

Here, we stress that the total strength of disclinations in liquid crystals is not
arbitrary, but is a topological invariant. From the Gauss—Bonnet—Chern theorem
and the Hopf index theorem (Duamal., 1998; Yang, 1998), the total disclination
strength equals the Euler characteristic of the material body. Inliquid crystals, since
the free energy is proportional to the square of the disclination strength, there exists
in general the disclination lines of strendglin two dimension and the disclination
points of strength 1 in three dimension. In two-dimensional case, the general
directorn rotates from O tor in a circle around a disclination line of strengﬁh

Then, there must be two vertical directions, for exandifle< 6 < %) and% + 0,

at which one can see two brushes when observed between the orthogonal Nicol
prisms. While for a disclination point of strength 1 in three-dimensional case, the
directomrotates from Oto 2 and there are four directions suct¥asg + 6, = + 6,

and 37” + 6, which give four brushes. All these are the topological quantization
and inner structure of disclinations in liquid crystals. In the following sections, we
will study the bifurcation behavior of disclination points in terms of the external
factorx°.

4. THE ORIGIN AND ANNIHILATION OF DISCLINATION
POINTS AT THE LIMIT POINTS

In the above section, the topological quantization of disclination points is
based on condition (16), which guarantees all of the zerag(xf are regular
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points. However, when the material body is distorted by some external factors
from outside, the general director fieldnside the body and the order parameter

¢ of disclination are changed, and new disclinations might be created. In this case,
condition (16) may not be satisfied any longer but becodigs'x) = 0, under
which the kernel o' (x) contains some branch points and, then, the consequences
in Section 3 will change in some way. In the following, let us explore what will
happen to the disclination points at the branch peint (x%, x*) determined by

¢ (X% xL,x%,x3) =0, i=1,23
6400, x4, x2,x3) = 3 (£) = 0.

In theg-mappingx — ¢(x), there are usually two kinds of branch points, namely
the limit points and bifurcation points satisfying

(24)

J¢ (%) v« #0, «=1,2,3 (25)
and
319 () —0 oe
X lx* =0, «=1,2,3 (26)

respectively, where the Jacobian determinalit& /x) have been generally de-
fined in (13). In this section, we consider case (25). The other case (26) is compli-
cated and will be detailed in Sections 5 and 6. For simplicity and without lose of
generality, we consider = 1 only.

Since the usual implicit function theorem is of no use when the Jacobian
determinant](¢/x) = 0, for the purpose of using the implicit function theorem
to study the branch properties of disclination points at the limit points, we use the
Jacobian)(¢/x) instead ofJ (¢ /x) to search for the solutions ¢f (x) = 0. This
means we have replaced the role of the external param@tey x*. For clarity
we rewrite the former equations of (24) as

¢ (xx% x%x%) =0, i=1,223 (27)

Considering condition (25) and making use of the implicit function theorem, the
solution of (27) can be expressed in the neighborhood of the limit pdiat
(x%, x*) as

X0 =x0xh),  x2=x3(xY), xX*=x3(xhH (28)

with x% = x°(x%*). In order to show the behavior of the disclination points at the
limit points, let us investigate the Taylor expansion of (28) in the neighborhood of
X* — (XO*, X*)

dx? 1 d°x°

XO :XO*+ S (Xl—Xl*)+ =



998 Yang, Zhang, and Duan

In the present case, from (18), (25), and the last equation of (24), one has

PR )
T T 36/

|X* = 00, (30)

dx°

Then the Taylor expansion (29) can be further read as

0 _ Ox __ }ﬂ
~ 2(dxb)2

which is a parabola iR —x° plane. From (32) we can obtain two solutiors(x°)

andle(xo), which give the branch solutions of disclination points at the limit point.

If (d?x%/(dx*)?)|x- > 0, we have the branch solutions fe? > x%; otherwise,

we have the branch solutions faf < x%. These are related to the origin and

annihilation of disclination points at the limit point. Since the topological current

of disclination points is identically conserved, the strengths of the two generated

disclination points must be opposite at the limit point, i.e.,

Bin1 = —PBanz, (33)

e (xH = x1)? (32)

or

B1 = P, n=-n2, (34)

which is similar to the conservation law of Burgers vector in dislocation contin-
uum. Furthermore, from the studies in this section, we can see that the origin and
annihilation of disclination points are not gradual changes, but start at a critical
value of external variable, i.e., sudden changes.

5. THE BIFURCATION OF DISCLINATION POINTS AT THE
FIRST-ORDER DEGENERATED POINTS

Now, let us turn to consider the other case (26). In the present condition, we
have the restrictions

J <¢> lx+ = 0, J* <¢) x* =0, a«=1,2,3, (35)

X x
i.e., the rank of the Jacobian matrikg/9x]
99
K[ — | Ix« < 3. 36
rank| 52 | (36)

The two restrictive conditions in (35) imply an important fact that the function
relationship betweexr® andx is not unique in the neighborhood of the bifurcation
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point x*. In the topological current form of disclination points, this fact can be
seen easily from Eq. (18)

e _ dx_ 34/x)
T dx0  J(p/x)

which under (35) directly shows the indefiniteness of the direction of integral curve
of (37) atx*. This is why the very poink* = (x%, x*) is called the bifurcation
point of disclination current.

Since the rank of the Jacobian matrd[/9x] is smaller than 3, with the aim
of finding the different directions of all branch curves at the bifurcation point, we
suppose

|X*1 a = 11 21 31 (37)

d¢
Kl —|[|xs =3—-1=2 38
rank| 52 b 39)
and let
¢ 5 5
__ | ax#? ox
9x2? 9x3 Ix*

which meansc* is a first-order degenerated pointg@i(x). (The case that* is a
second-order degenerated point will be treated in the next section. yP{an= 0
and¢?(x) = 0, the implicit function theorem says that there exists one and only
one function relationship

x2=x*(x% xY),  x3=x3x% xh). (40)
Substituting (40) inta!(x) and¢?(x), we have
&I (X0, x, x2(x%, xb), x3x%, x1) =0, j=1,2, (41)
which give
Doopxb =—¢s D _ohx =—¢i, (42)
p=2 p=2
> obdo= -3 2ol + 30O |- obe @
=2 =2 y=2

3 3 ) i 3 ) )
Y ohxbi=->" [¢},ox{’ +ohxE + > (04, %0 )xf} — ¢ (44)
— p=2

B=2 y=2

3 3 ) 3 ) )
doopdy==>" [2¢,éle + Y (b, x4 )xf} — 1y, (45)
p=2 p=2 y=2
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wherej =1, 2;8,y =2, 3, and

ax? ax? 32xP 32xP 32xP
B _ B _ B _ B _ B _
% =50 T g X0 e 0T Guogar 0T e 49
. Al . 0l L g . 320 . 320
- J - |- J - J
%= 550 PT g 9T g P0= (8x9)2° 1= gop (47
82¢j 32¢j 82¢j 32¢i

i i i i
P11= (9x1)2’ P50 = Gxoaxt’ P17 Gxiaxst P T pxboxr (48)

From these expressions we can calculate the values of the first- and second-order
partial derivatives of (40) with respect x8 andx* at the bifurcation poink*.

In order to explore the behavior of the disclination points at the bifurcation
point, as before, we will investigate the Taylor expansion of

FOC, xY) = ¢3(x%, X, (X%, x1), x3(x°, x1) (49)
in the neighborhood of*, which according to (24) must vanish at the bifurcation
point, i.e.,
F(x%, x*)=0. (50)
From (49) the first-order partial derivatives Btx°, x*) with respect to® andx*
can be expressed by
OF 3% 0g® p,  AF  39° 99 4
R DY =Y

A - —— X7 . 51
ax0 ~ 9xo axP L (51)

o axt ~ gxt
= 0xP oxt - oxt 4o

On the other hand, making use of (42), (51), and Cramer's rule, it is not difficult
to prove that the two restrictive conditions in (35) can be rewritten as

® IF . (¢

’ (Y) = <8x1 % (§>) e =0 2
¢ aF . (¢

? (%)= (e (5)) =0 =

oF oF
MR* = 0: W|x* =0 (54)

by considering (39). The second-order partial derivatives of the funEt{h, x*)
are easily found to be

which lead to

aZF 3 3
ok P+ Y |:2¢§oxg + paxby + > (85,5 x5 } (55)
p=2

y=2
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axo 8x1 = ¢o+ Z [“bﬁoxl $p1X0 + b1 + Z Dp X0 Xf] (56)

y=2
9’F 3, v 3B
(oxi —fnt D | 20504 + o + Z 95, )1 (57)
p=2
which atx* = (x%, x*) are denoted by
9%F 9%F 3%F
= ——57 lx = ——— I, = —— s, 58
(9x0)2 Ix ax0 ox1 Ix (9x1)2 Ix (58)
whereg, y = 2, 3and
8¢3 32¢3 82¢3 82¢3
3_ 99" 3 _ 3 _ 3 _
%= gxp Y0 = (9x0)2’ P01= Goga = (9x1)2’ (59)
82¢3 82¢3 82¢3
3 _ 07" 3 3 _
V0 = Gxaoxs’ T oxtaxp O T g (€0

Then, from (50), (54), and (58), we obtain the Taylor expansiof (@, x*)
F(XO, Xl) — %A(XO o XO*)Z + B(XO o XO*)(Xl o Xl*) + %C(Xl o Xl*)2 (61)

that by (49) is the behavior @f*(x) in the neighborhood of the bifurcation point
x*. Because of (24), we have
AX® — x%)?2 £ 2B(x® — x®)(xt = x¥) + Cc(xt —x¥)2 =0 (62)

which is followed by

dx®\? dxO
or
dxt dx1

The different directions of the branch curves at the bifurcation point are deter-
mined by the solutions of (63) or (64). Some possible results are discussed and
diagrammed in Duaet al. (1998) and Jiang and Duan (2000). The remaining
componentslx?/dx% anddx3/dx° can be deduced by

dx? s pdxt

a0 T g

in which the partial derivative coefﬂmenl;é3 andx have been calculated in (42).

=23 (65)
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As before, since the topological current of disclination points is identically
conserved, the sum of the strengths of the two split disclination points must be
equal to that of the original disclination point at the bifurcation point, i.e.,

Bin1 + Banz = By, (66)

which is analogous to the conservation law of Burgers vector in dislocation contin-
uum. Since the free energy is proportional to the square of the disclination strength,
the result (66) indicates that in liquid crystals, a disclination point with a higher
value of disclination strength is unstable and it will evolve to the lower value of
disclination strength through the bifurcation process.

At the end of this section, we conclude that in our topological current theory
of disclination points, there exists the crucial case of branch process due to the
varying of external factors. This means when an original disclination point moves
through the bifurcation point, it may splitinto two disclination points moving along
different branch curves and reaches a stable state of lower value of disclination
strength. The branch process of disclination point is also not a gradual change but
a sudden change with the varying of external parameters.

6. THE BIFURCATION OF DISCLINATION POINTS AT THE
SECOND-ORDER DEGENERATED POINTS

In the above section, we have studied the bifurcation of disclination points
at the first-order degenerated points. In this section, we will discuss the branch
process of disclination points at the second-order degenerateckpeintx®, x*),
at which the rank of the Jacobian matrbg]/dx] is

d¢
kl —|[lx»=3-2=1. 7
ran [ax] I« = 3 (67)
Suppose that
agpt
w&* # 0. (68)

With the same reason of obtaining (40), fraph(x) = O we have the function
relationship

x3 =x3x% xt, x?) (69)

in the neighborhood of*. In order to determine the values of the first- and second-
order partial derivatives af® with respect tax®, x*, andx?, one can derive the
system of equations similar to (41)—(48). Substituting the relationship (69) into
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¢$?(x) = 0 andp3(x) = 0, we get
F1(x%, xt, x2) = ¢2(x°, x*, x2, x3(x%, x%, x2)) = 0 o
FZ(XO! Xl! X2) = ¢3(X01 Xl, X2, X3(XO, Xl, XZ)) =0. ( )

As shown in the above section, for the first-order partial derivatives of the functions
F1(x%, x%, x?) andF»(x°, x1, x2), one can prove the following six formulas similar
to (54)
d Fy e = 0 Fg e = 0 Fy
axo T T g T T gx2
So the Taylor expansions & (x°, x%, x2) and F»(x°, x%, x?) can be read in the
neighborhood ok* as

k=0, k=1,2 (71)

Fr(x®, x5, x%) & A (x® = x%)% + Ap(x® — x®)(xt — x™)
+ Aa(X® = xT) (X = x*) + Ag(xt — xM)?
+ As(Xt — X)(X2 = X**) + Ae(x® — x**)?

=0, (72)
wherek = 1, 2 and
1 9% 9?Fy 32Fy
= - — * = - *y A = ———= *y 73
K= 5 ax0)2 Ix k2 = o Gl Ix k3= o G px? Ix,  (73)
1 92F 92k, 1 92F,
= =———" *y = —F *y = —— *, 74

Dividing (72) by x° — x%)? and taking the limitx® — x%, one obtains the two
quadratic equations afx*/dx° andd x?/dx°

A JrAkdxlJFA dXZ+A dxt 2+A dxldx2+A dx? 2_0
ki 2dx0 K3 dx0 K4\ dx0 kS 3x0 dxO laxe) ~
(75)

and further, eliminating the variabtex/dx°, has the equation afx?/dx° in the
form of a determinant

A AisV+ Ap Aev? + AV + Ang 0
0 A1 AisV + Ag Arev? + AV + A 0 (76)
Ass AssV + Azp Asev? + Apav + Axp 0 B

0 Axy AgsV + Ay AgeV? + Agv + An
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with the variabler = dx?/dx°, which is a fourth-order equation dfx?/d x°

a dx 4—l—a dx 3+a dx® 2+ dx +a5=0 77)
1\ dxo 2\ dx0 3\ dxo %\ 30 T
Therefore we get the different directions of the branch curves at the second-order
degenerated point*. The largest number of the different branch curves is four,

which means an original disclination point with the strengthcan split into four
disclination points with the strengtlisn (I = 1, 2, 3, 4) satisfying

Bin1 + Banz + Banz + Bana = Bn (78)
at one time at most.

7. CONCLUSIONS

In this paper, using th¢-mapping method and topological current theory, the
properties and behaviors of disclination points in three-dimensional liquid crys-
tals are studied. By introducing the strength density and the topological current of
disclination points, we obtain the inner structure and the topological quantization
of the disclination points when the Jacobian determinant of the general director
field does not vanish. It is pointed out that the disclination points are topologically
guantized by the Hopf indices and Brouwer degrees (i.e., the wrapping numbers)
at the singularities of the general director field, and the total disclination strength
of liquid crystal is not arbitrary but a topological invariant, the Euler characteristic.
Because of the equivalence of the director figidsnd —n in physics, the Hopf
indices can be integers and half-integers, which represent a great generalization to
our previous theory of integer Hopf indices. When the liquid crystals are distorted
by some external factors from outside such that the Jacobian determinant of the
general director field vanishes, the origin, annihilation, and bifurcation of discli-
nation points are detailed in the neighborhoods of the limit points and bifurcation
points, respectively. The branch solutions at the limit points and the different di-
rections of all branch curves at the first- and second-order degenerated points are
calculated. The largest number of the different branch curves is four, i.e., an origi-
nal disclination point can split into four disclination points at one time at most. For
the topological current of disclination points is identically conserved, the strengths
of the two generated disclination points must be opposite at the limit point and,
at the first- and second-order degenerated points, the sum of the strengths of the
split disclination points must be equal to that of the original disclination point.
Since the free energy is proportional to the square of the disclination strength, it
is pointed out that a disclination point with a higher value of strength is unstable
and it will evolve to the lower value of strength through the bifurcation process.
Furthermore, we see that either the origin and annihilation of disclination points
at the limit point or the branch process at the bifurcation point are not gradual
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changes, but start at a critical value of external parameters, i.e., sudden changes
with the varying of external factors.
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